product

Information on gas burners

Precision as standard

Weishaupt monarch[®] gas burner, WM-G10 (65 – 1250 kW)

Progress and tradition: The new monarch[®] gas burner

For more than 50 years the monarch® trademark has stood for power and quality

For more than five decades Weishaupt's monarch[®] series burners have been used on a wide variety of heat exchangers and industrial plant, forming the basis of Weishaupt's outstanding reputation.

This successful series is now continued by the new WM-G10 gas burner. Ultra-modern technology in conjunction with a compact construction make this powerful burner universally employable.

Digital.

Digital combustion management for economical and safe burner operation. The controls are easy to use.

Compact.

The aerodynamic housing and special air feed enable a higher capacity within smaller dimensions.

Quiet.

The new monarch burners operate with considerably reduced noise levels, thanks to the newly developed fan unit.

WM-G10 Weishaupt monarch[®] burner: Top design, technology and quality

The new WM-G10 Weishaupt monarch[®] burner is the logically consistent further development of the legendary monarch[®] series. This completely newly developed burner generation is considerably more compact, powerful and quiet and reaffirms Weishaupt's burner construction expertise.

Futuristic fan technology

Right from the earliest developmental stages of this new burner generation, particular emphasis was placed on a compact, aerodynamic construction and low operational noise levels. To realise this goal, a completely new air inlet and air damper control were developed. The special housing design with the self opening air inlet, together with the new air damper technology, results in increased fan pressure and thus more capacity from a more compact form. The air damper control provides a high degree of linearity even at the lower end of the operating range and combined with the sound attenuated air inlet, which is included as standard, ensures quieter operation.

Fast commissioning, simple servicing

All WM-G10 burners are delivered with the mixing assembly preset for the required output of the burner. A final adjustment is made using the combustion manager's menu controlled commissioning program. All the burner's components, such as the mixing assembly, air damper and combustion manager, are readily accessible despite its compact construction, enabling maintenance and servicing work to be carried out quickly and easily. This is further helped by the standard hinged flange, which provides a perfect servicing position for the burner. Adjustment to suit different combustion chamber conditions can be easily carried out on the burner in its installed position. The integral sightglass enables ignition and the flame to be observed.

Low NO_X operation

Low NO_x figures are dependent on combustion chamber geometry and volumetric loading. NO_x figures and the necessary combustion chamber dimensions can be found in the publication "Conditions for attaining the NO_x emission values for burners."

Fuels

Natural Gas E Natural Gas LL Liquid Petroleum Gas B/P

Applications

The Weishaupt WM-G10 gas burner is suitable for:

- installation on heat exchangers to EN 676 and EN 303-2
- hot water plant
- steam boilers and high pressure hot water plant
- intermittent and continuous operation
- · installation on air heaters

The combustion air must be free of aggressive substances (halogens, chlorides, fluorides etc.) and impurities (dust, debris, vapours etc.). For some applications the use of an extraneous air supply is recommended (additional cost).

Permissible ambient conditions

- Ambient temperature:
- -15 to +40°C (in operation) • Humidity: max. 80% relative
- humidity, no dew point
- Suitable for operation indoors onlyFor plant in unheated areas certain
- further measures may be required (please enquire)

Use of the burner for applications or in ambient conditions not detailed above is not permitted without the prior written agreement of Max Weishaupt GmbH. The service intervals will be reduced in accordance with the more extreme operational conditions.

Certification

The burners are tested by an independent body and conform to the following standards and EU directives:

- EN 676 (LN version has best, Class 3 emission levels for natural gas)
- Machinery Directive 98/37/EC
- Electromagnetic compatability EMV 89/336/EEC
- Low Voltage Directive73/23/EEC
- Gas Appliance Directive
 90/396/EEC
- Pressure Vessel Directive 97/23/EC
- The burners carry the CE and CE-PIN marks

The most important advantages at a glance

- Digitial combustion management at all ratings
- More compact than previous burners of a similar rating
- Sound attenuated air inlet as standard for quieter operation
- Powerful fan due to the specially developed fan geometry and air damper control
- All WM-G10 burners are delivered with the mixing assembly preset for the required output of the burner
- IP 54 protection as standard
- Easy access to all components, such as: mixing assembly, air damper and combustion manager
- Safe operation with sliding two stage or modulating operation as standard
- Computer controlled function test at the factory of each individual burner
- Burner can be supplied pre-wired with plug connections
- Excellent price/capacity ratio
- Well established, global service network

Digital combustion management: Precise, simple and safe

Input and control via the control and display unit (e.g. W-FM 50)

Digital combustion management means optimal combustion figures, continually reproducible setting figures and ease of use.

Weishaupt WM-G10 gas burners are equipped as standard with electronic compound regulation and digital combustion management. Modern combustion technologies demand a precise, continually reproducible dosing of fuel and combustion air. Only in this way can optimal combustion figures be ensured over extended periods.

Simple operation

Setting and control of the burner is achieved using a control and display unit. The CDU is linked to the combustion manager via a bus system, enabling the user friendly setting of the burner.

Flexible communication possibilities

The integral interface enables all necessary information and functions to be relayed to a superordinate control system. If required, a modem enables a telephone connection to be installed for remote operation, monitoring and diagnosis.

Communication with external systems via bus

Several bus systems are availabe via the E-Gate if data from the burners are to be exchanged with a PLC unit, or if the burners are to be integrated into a building management system. For the control and management levels Weishaupt offers ProGraf NT, a real time software product to meet any and all requirements.

New technology advantages

Digitial combustion management makes burner operation simple and safe. The most important advantages:

- No additional burner controls are necessary as control is effected by the combustion manager. The only additional requirements are control and motor fuses (by others).
- Reduced installation expense: Each burner is tested and supplied by the factory as a complete unit.
- Commissioning and service work takes less time. The burner's basic parameters are set at the factory. Adjustment to site conditions and combustion emission checks are effected via the combustion manager's menu controlled commissioning program.

Example with W-FM 50 (standard from 2006)

Gas burner selection WM-G10, versions ZM and ZM-LN

Version ZM

Version ZM-LN

Open

Capacity graphs in accordance with EN 676. The ratings given are based on installation altitude of 0 m. Depending on the altitude of the installation, a reduction in capacity of 1% for every 100 m above sea level should be taken into account.

ZM version gas burner operation with town's or sewage gas

When selecting burners, the stated capacities must be reduced by 10% in the range of the resistance curves for town's gas or sewage gas.

Open

Technical data Scope of delivery

Technical data

Burner		WM - G10/2-A / ZM	WM - G10/3-A / ZM	WM - G10/4-A / ZM
Burner motor	Weishaupt type	D90/50-2	D90/90-2	D90/90-2
Nominal capacity	kW	0.76	1.5	1.5
Nominal load	A	2.1	3.5	3.5
Motor prefuse ($\Upsilon \Delta$ start)	A minimal	10 A slow (external)	10 A slow (external)	10 A slow (external)
Speed (50 Hz)	rpm	2850	2800	2800
Combustion manager	Туре	W-FM 100 (W-FM 50) ¹⁾	W-FM 100 (W-FM 50)1)	W-FM 100 (W-FM 50)1)
Air stepping motor	Туре	SQM 45 (STE 50)1)	SQM 45 (STE 50) ¹⁾	SQM 45 (STE 50)1)
Gas stepping motor	Туре	SQM 45 (STE 50)1)	SQM 45 (STE 50)1)	SQM 45 (STE 50)1)
NO _x class in accordance with EN 676		1	1	1
Weight	kg	approx. 54	approx. 56	approx. 56
Burner		WM - G10/2-A / ZM-LN	WM - G10/3-A / ZM-LN	
Burner motor	Weishaupt type	D90/50-2	D90/90-2	
Nominal capacity	kW	0.76	1.5	
Nominal load	А	2.1	3.5	
Motor prefuse (Ƴ∆ start)	A minimal	10 A slow (external)	10 A slow (external)	
Speed (50 Hz)	rpm	2800	2800	
Combustion manager	Туре	W-FM 100 (W-FM 50)1)	W-FM 100 (W-FM 50)1)	
Air stepping motor	Туре	SQM 45 (STE 50)1)	SQM 45 (STE 50)1)	
Gas stepping motor	Туре	SQM 45 (STE 50)1)	SQM 45 (STE 50)1)	
NO _x class in accordance with EN 676		3	3	
Weight	kg	ca. 54	ca. 56	

Voltages and frequencies:

Standard burner motor:

The burners are equipped as standard for three phase alternating current 400 V, 3~, N, 50 Hz. Other voltages and frequencies available on request.

Isolation class F, IP 54 protection.

Scope of delivery

Description	WM-G10/2-A / ZM	WM-G10/3-A / ZM	WM-G10/4-A / ZM	WM-G10/2-A / ZM-LN	WM-G10/3-A / ZM-LN
Burner housing, hinged flange, housing cover, Weishaupt burner motor, air inlet, cover, fan wheel, combustion head, ignition unit, ignition cable, ignition electrodes, combustion manager with control and display unit, flame sensor, stepping motors, flange gasket, hinged flange with limit switch, fixing screws.	•	•	•	•	•
Combustion manager W-FM 100 (W-FM 501)) •	•	•	•	•
Double gas solenoid valves (DMV), Class A	•	•	•	•	•
Gas butterfly valve	•	•	•	•	•
Valve connection piece	•	•	•	•	•
Air pressure switch	•	•	•	•	•
Low gas pressure switch	•	•	•	•	•
Adjustable regulating sleeve in the mixing assembly	•	٠	٠	•	•
Stepping motor for gas butterfly and air damp	er	•	•	•	•

Note: In accordance with EN 676 gas filters and governors form part of the burner supply (see Weishaupt accessories list). Burner execution complies with TRD 604, 24 h / 72 h (see technical brochure, print No. 863).

Valve train sizing WM-G10, version ZM

WM-G	310/2 ,	versi	on Z	Μ							
Burner rating kW	Low pr pressu off valv Nomii 3/4" 1 Nom. d	ressure ure in mb ve, p _{e.max} nal dian 1" 1'/2" diamete 0 40	supply par be = 30 neter 2" r of ga	y (flo fore 0 ml of D 65	shut par) MV	pres dou Nor 3/4"	sure ble so ninal 1"	ssure in ml oleno I dian 1'/2" mete 40	oar be id val nete i 2 "	efore ve) r of D 65	
Natural 300 350 400 450 500 550 600 650	40 1 53 1 68 2 85 2 104 3 125 4 148 4	$H_{i} = 37$ $9 - 24 - 11$ $29 - 13$ $34 - 15$ $40 - 17$ $47 - 19$ $54 - 21$	- 9 10 12 13 15	/J/n - - 9 9 10 11 12	n³(10.35 k	Wh/m 21 28 36 45 55 66 78 91	³), d = 7 9 11 13 15 17 20	= 0.6 6 7 8 9 10 11	06 - 7 8 9 10 11	- - 6 7 8 9	
Natural 300 350 400 450 500 550 600 650	56 2 75 2 97 3 121 3 148 4 178 5 211 6	$H_{i} = 3$ $20 - 25$ 11 $32 - 13$ $39 - 16$ $47 - 18$ $56 - 21$ $55 - 24$ $75 - 27$	9 11 12 14 16 18	/J/r - 9 10 11 12 13 14	n³(8.83 kV	Vh/m ³ 39 51 64 78 94 111 130	, d = 8 10 12 14 17 20 23 26	0.64 6 7 8 9 11 12 14	1 6 7 8 9 11 12 13	- 6 7 8 9 10	
LPG B/ 300 350 400 450 500 550 600 650	19 25 31 1 39 1 47 1 55 2 65 2	93.20 N 3 - 5 - 8 10 21 11 24 12 27 13	- - 9 10 11	³ (25 - - - 8 9 10	.89 kWh/r	m ³), d = 10 13 17 21 25 30 35 41	= 1.5 - 6 7 8 9 10 12	55 - - 6 7 8	- - 6 7 8	- - 6 7	
WM-G	G10/4,	Ausf.	ZM								
WM-G Burner rating kW	Low pressu off value Nomin 1" 1'/	ressure ure in mb ve, p _{e,max} nal dian ⁄2"2"	supply par be = 30 neter 65 r of ga	fore 0 ml of D 80 1	shut par) MV 100	pres dou Nor 1"	sure ble so ninal 11/2"		id val netei 65	efore ve) r of D 80	MV
Burner rating	Low pr pressL off valv Nomin 1" 1'/ Nom. c 50 5 Gas E 45 1 60 2 78 2 96 3 117 3 139 4 164 5	ressure ure in mb ve, p _{e,max} nal dian 1/2" 2" diameter 50 50	supply bar be = 30 neter 65 r of ga 50 7,26 M 9 11 14 15 16 19 21	fore 0 ml of D 80 1 as bu 50	shut par) MV 100 tterfly	pres dou Nor 1" Non 50	sure ble so ninal 1'/2" n. dia 50	in mb oleno I dian 2" mete 50	id val neter 65 r of g 50	efore ve) r of D 80 as bu	MV 100 Itterfly
Burner rating kW Natural 600 700 800 900 1000 1100 1200 1250	Low ppressl off value Nomin 1" 1'/ Nom. c 50 5 Gas E 45 1 60 2 78 2 96 3 117 3 139 4 164 5 Gas LL 63 2 85 2 109 3 136 4 166 5 199 6 235 7	ressure ressure in mt ve, $p_{e,max}$ nal dian $(2^{\prime})^{2^{\prime}}$ diametel $(0 50)^{2^{\prime}}$ $H_{i} = 3^{\circ}$ $(7 12)^{2^{\prime}}$ $(1 6)^{2^{\prime}}$ $(2 22)^{2^{\prime}}$ $(2 22)^{2^{\prime}}$ $(3 22)^{2^{\prime}}$ $(2 22)^{2^{\prime}}$ $(3 22)^{2^{\prime}}$ $(3 22)^{2^{\prime}}$ $(4 29)^{2^{\prime}}$ $(4 35)^{2^{\prime}}$ $H_{i} = 3^{\circ}$	supply, aar be = = 30 neter 65 50 7,26 N 11 14 15 16 19 21 22 1.79 N 11 14 17 19 21 22 27	fore 0 ml 0 ml 0 f D 80 1 as bu 50 //J/n 10 11 12 13 14 15 16	shut poar) MV 100 ttterfly 50 9 10 11 11 12 13 13 13 n° (8.83 kV 8	Pres dou Nor 1" Non 50 Wh/m 15 21 27 32 38 45 57 57	sure ble so ninal 1'/2" n. dia 50 3), d = 8 11 14 16 18 20 23 25	in mb oleno dian 2" mete 50 = 0.60 8 10 13 15 17 19 21 23 	bar be id val 65 r of g 50 06 6 8 10 11 12 13 14 15	efore ve) r of D 80 - 350 - 7 8 9 10 10 10 11	MV 100 50 - 6 8 8 9 9 9 10

WM-0	WM-G10/3, version ZM												
Burner rating kW	pressu off val Nomi 3/4"	ressure ire in m ve, p _{e,ma} nal dia 1 1/2 diamete 0 50	bar b _x = 3 nete 2"	efore 00 m r of E 65	shut bar) DMV 80	100	pres dou Nor 3/4"	sure ble so ninal 1"	in ml oleno I diar 11/2"	supp bar b id val nete 2" r of g 50	efore ve) r of E 65		
Natura 500 550 600 650 700 750 800 850 900 950 1000	Natural Gas E H _i = 37,26 MJ/m³ (10.35 kWh/m³), d = 0.606 500 104 34 14 11 9 - 54 12 7 7 6 - - 550 124 40 16 12 10 8 8 65 14 8 8 6 5 600 147 46 18 14 10 9 9 77 17 9 9 7 6 6 5 600 147 46 18 14 10 9 9 77 17 9 9 7 6 6 5 700 198 61 22 17 12 10 104 22 11 18 7 7 750 226 69 25 18 13 11 10 19 24 13 12 9 8 8 50 - 87 30 22												
Natura 500 550 600 650 700 750 800 850 900 950 1000	178 5 210 6 246 7 - 8	6 17 5 20 4 23 4 26 5 29 7 33 0 36 3 40 7 44 2 48	11.79 13 15 17 19 21 23 26 28 31 33 36	MJ/r 10 11 12 13 15 16 17 18 20 21 23	m ³ (8. 9 10 11 12 13 14 15 15 16 17	83 kV 8 9 10 11 11 12 13 14 14 15	Vh/m ³ 77 93 110 129 - - - - - - - - - - - -), d = 16 19 22 25 29 33 37 41 45 50 55	0.64 9 10 11 13 14 16 18 20 21 23 25	1 9 10 11 13 14 16 17 19 21 23 25	7 8 9 10 11 12 13 14 15 16	6 7 8 9 10 11 12 13	5 6 7 8 9 10 11 11 12
LPG B 500 550 600 650 700 750 800 850 900 950 1000	54 2 64 2 74 2 97 3 110 3 123 4 137 4 152 4	93.20 7 - 0 10 3 11 6 12 9 13 3 14 6 16 0 17 4 18 9 20 3 21	MJ/r 8 9 10 11 12 13 13 14 15 16	n ³ (25 - - 8 9 10 10 11 11 11 12 13	5.89 F - - 8 9 10 10 11 11	Wh/r - - - 8 9 9 10 10 10	n ³), d = 24 29 34 39 45 51 58 65 73 81 89	= 1.5 7 8 9 10 11 13 14 15 17 18 20	55 5 6 7 7 8 9 9 10 11 12	- 5 6 7 8 9 10 11 11	- - 5 6 7 7 8 8 9	- - 5 6 7 7 8 8	- - 667 78

For valve train sizing with town's gas and sewage gas see separate worksheet, print No. 900.

The CE-PIN No. is not valid for ZM version gas burners operating on town's gas or sewage gas.

Applicable additional and accessory prices, as well as conditions which must be adhered to, are available on request.

Valve train sizing WM-G10, version ZM-LN

WM-G	i10/2, ve	ersion	ZM-LN						
Burner rating kW	Low pres pressure off valve, Nominal 3/4" 1"	sure supp in mbar b p _{e,max} = 3 diamete 1'/2" 2" meter of g	oly (flow efore shut 00 mbar) r of DMV 65 jas butterfly	pres dou Nor 3/4"	ssure ble so ninal 1"	in ml oleno I diar 1'/2" mete	oar be id val nete 2" r of g		٨v
300 340 380 420 460 500 540	Gas E H 42 17 53 21 66 25 79 30 93 34 109 39 125 44 143 49 167 56	= 37,26 10 9 12 10 14 12 16 14 17 15 19 16 21 17 23 19 25 21	MJ/m³(10.35 k 9 11 12 13 14 15 16 17	Wh/m 23 29 36 44 51 59 68 78 91	³), d = 8 10 12 14 16 17 19 21 24	= 0.6 6 7 9 10 11 12 13 14 16	06 7 9 10 11 12 13 14 16	7 8 9 10 11 11 12 13	
300 340 380 420 460 500 540 580	Gas LL H 59 22 75 28 92 34 111 40 132 46 154 53 178 60 204 68 239 78	12 11 14 13 17 15	MJ/m³(8.83 kV 9 11 13 14 15 17 18 19 21	Vh/m ³ 32 41 50 61 72 84 97 110 129), d = 10 12 15 18 20 23 25 28 32	0.64 7 9 11 13 14 15 17 18 20	1 9 11 12 14 15 17 18 20	6 8 10 11 12 13 14 15 17	
LPG B/ 300 340 380 420 460 500 540 580 630	$\begin{array}{c c} \textbf{P} & \textbf{H}_{i} = 93\\ 20 & -\\ 25 & 12\\ 31 & 14\\ 37 & 17\\ 42 & 18\\ 49 & 20\\ 55 & 22\\ 62 & 24\\ 72 & 26 \end{array}$	8.20 MJ/r 9 9 11 10 11 10 12 11 12 11 13 11 14 12	n ³ (25.89 kWh/r - - 9 10 10 10 10 10	m ³), d = 11 14 17 21 24 27 30 34 39	= 1.55 6 7 9 10 10 11 12	55 - 6 7 7 8 8 8 8 8	- 6 7 7 8 8	- 5 7 7 7 7 7 7	

The combustion chamber pressure in mbar must be added to the minimum gas pressure required.

For low pressure supplies, pressure regulating devices with safety membrane in accordance with EN 88 are used. The maximum permissible supply pressure before the shut off valve is 300 mbar.

For high pressure supplies, high pressure regulating devices in accordance with EN 3380 can be selected from the brochure "Pressure regulating units with safety devices for Weishaupt gas and dual fuel burners." This details high gas pressure sets for supply pressures of up to 4 bar.

See burner plate for maximum connection pressure.

CE-PIN No.:

CE 0085B00027

Burner rating kW	pres off v Nor 3/4"	sure alve, ninal 1"	sure in ml Pe.ma I diar 1'/2" mete 50	oar b (= 3) nete 2"	efore 00 m r of E 65	shut bar) MV 80	100	pres dou Nor 3/4"	sure ble so ninal 1"	in ml oleno I diar 11⁄2"	bar bi id val nete 2 "	ve) r of D 65		
Natura 450 550 600 650 700 750 800 850 900	87 106 128 152 177 204 232 263 295	E H 30 37 44 51 59 67 75 84 94 103	= 3' 14 17 20 23 26 28 31 34 36 39	7.,26 12 14 16 19 21 23 24 26 28 30	MJ/r 10 12 13 15 17 18 19 20 22 23	m ³ (10 9 11 12 14 15 16 17 18 19 20).35 k 9 10 12 13 15 15 16 17 18 19	Wh/m 46 57 69 82 96 110 125 -	³), d = 12 15 18 21 25 27 30 33 36 40	= 0.6 8 10 12 14 16 17 19 20 22 23	06 8 10 12 14 16 17 18 20 21 23	7 8 10 12 13 14 15 16 17 18	6 8 9 11 12 13 14 15 16	6 8 9 11 12 13 13 14 15 16
Natura 450 550 600 650 700 750 800 850 900	123 151 182 216 252 291	L ⊢ 49 59 70 81 92 104 117 130 145	$f_i = 3$ 17 21 24 28 32 36 39 43 47 52	1.79 14 17 22 25 28 30 33 35 38	MJ/r 11 13 15 18 20 21 23 24 26 28	m ³ (8. 10 12 14 16 17 18 20 21 22 23	83 kV 10 11 13 15 16 17 18 19 20 21	Vh/m ³ 65 81 97 116 135 - - - - -), d = 16 20 23 28 32 36 40 44 48 53	0.64 10 12 14 17 19 21 23 25 27 29	1 10 12 14 17 19 21 23 25 27 29	8 10 12 14 15 17 18 19 20 22	7 9 11 12 14 15 16 17 18 19	7 9 10 12 14 15 16 17 18

Burner order number

Burner type	Version	Order No.
WM-G10/2	ZM	217 110 20
WM-G10/3	ZM	217 110 30
WM-G10/4	ZM	217 110 40
WM-G10/2	ZM-LN	217 110 21
WM-G10/3	ZM-LN	217 110 31

DMV order number (with valve connection piece)

Order No.	10/2	10/3	10/4				
R 3/4	100 01	0 00	-				
R 1		100 010 01					
R 1 1/2		100 010 02	2				
R 2		100 010 03					
DN 65		100 010 06					
DN 80	-	100 010 07					
DN 100	-	100 010 08					

Further gas accessories, e.g. filters and governors can be found in the accessories list (Print no.: 83021201)

Special equipment Combustion manager overview

Special equipment

Special equipment		WM - G10/2-A / ZM	WM - G10/3-A / ZM	WM - G10/4-A / ZM	WM - G10/2-A / ZM-LN	WM - G10/3-A / ZM-LN
Comb. head extension	by 100 mm	250 030 03	250 030 06	250 030 09	250 030 15	250 030 18
	by 200 mm	250 030 04	250 030 07	250 030 10	250 030 16	250 030 19
	by 300 mm	250 030 05	250 030 08	250 030 11	250 030 17	250 030 20
Capacity controller for V	V-FM 100	11001718	110 017 18	11001718	11001718	11001718
Extraneous air inlet		210 030 09	210 030 09	210 030 09	210 030 09	210 030 09
Solenoid valve for air protest - continuous fan or		250 030 21	250 030 21	250 030 21	250 030 21	250 030 21

Note: Additional price for fitted and wired DMV with plug connections available on request. Burners to TRD, burners with plug connections and other executions available on request.

Combustion manager overview

System overview Digital combustion management	W-FM 50 ¹⁾	W-FM 100	W-FM 200
Combustion manager for intermittent operation	•	•	•
Combustion manager for continuous operation		•	•
Flame sensor for intermittent operation	QRC, Ion	QRI, Ion	QRI, Ion
Flame sensor for continuous operation		QRI, Ion	QRI, Ion
Servomotors in electronic compound (max.)	2 off	4 off	6 off
Servomotors with stepping motors	•	•	•
Speed control available	•		•
O ₂ trim available			•
Dual fuel operation		•	•
Gas valve proving	•	•	•
Integrated self checking PID controller temperature or pressure		Optional	•
Removable control unit (max. distance)	20 m	100 m	100 m
Fuel consumption meter	•2)		•
Display of combustion efficiency			•
eBUS / MOD BUS interface	•3)	•	٠
PC supported commissioning		•	•

¹⁾ Standard from 2006 ²⁾ not with speed control ³⁾ eBUS only

Installation examples Valve train layout

Low pressure supply Screwed valve train with DMV valves

Low pressure supply Flanged valve train with DMV valves

High pressure supply Flanged valve train with DMV valves

The installation examples show basic valve trains, i.e. DMV solenoid valves and additional gas valve train components.

Layout of the valve train

On boilers with hinged doors, the valve train must be mounted on the opposite side to the boiler door hinges.

Compensator

To enable a tension free mounting of the valve train, the fitting of a compensator is recommended.

Break points in the valve train

Break points in the valve train should be provided to enable the door of the heat exchanger to be swung open. The main gas line is best separated at the compensator.

Support of the valve train

The valve train should be properly supported in accordance with the site conditions. See the Weishaupt accessories list for various valve train support components.

Gas meter

A gas meter must be installed to measure gas consumption during commissioning.

Valve train layout

- Ball valve 1 1
- 2 Gas filter (
- Governor (low pressure) ^① 3 4
- Low gas pressure switch 4a
- High gas pressure switch (for TRD)
- Double solenoid valve(DMV) 5
- 6 Gas butterfly valve
- Pressure gauge with ball valve
- Gas pressure switch 8
- (valve proving)
- Q Burner
- Not included in burner and 1 valve train price

Dimensions

11	12 ISIONS II	n mm 3	4	b1	b2	h1	h2	h3	h4	r1	r2	d2
833	205	164 - 176	98	276	307	445	167	313	140	718	682	160
833	205	199 - 224	108	276	307	445	167	313	162	718	682	200
833	205	195 – 220	108	276	307	445	167	313	162	718	682	215
833	205	132 - 143	98	276	307	445	167	313	140	718	682	160
833	205	177 – 197	108	276	307	445	167	313	162	718	682	200
	I1833833833833	11 12 833 205 833 205 833 205 833 205	833 205 164 - 176 833 205 199 - 224 833 205 195 - 220 833 205 132 - 143	11 12 13 14 833 205 164 – 176 98 833 205 199 – 224 108 833 205 195 – 220 108 833 205 132 – 143 98	11 12 13 14 b1 833 205 164 - 176 98 276 833 205 199 - 224 108 276 833 205 195 - 220 108 276 833 205 195 - 220 108 276 833 205 132 - 143 98 276	11 12 13 14 b1 b2 833 205 164 – 176 98 276 307 833 205 199 – 224 108 276 307 833 205 195 – 220 108 276 307 833 205 195 – 220 108 276 307 833 205 132 – 143 98 276 307	11 12 13 14 b1 b2 h1 833 205 164 – 176 98 276 307 445 833 205 199 – 224 108 276 307 445 833 205 195 – 220 108 276 307 445 833 205 132 – 143 98 276 307 445	11 12 13 14 b1 b2 h1 h2 833 205 164 – 176 98 276 307 445 167 833 205 199 – 224 108 276 307 445 167 833 205 195 – 220 108 276 307 445 167 833 205 195 – 220 108 276 307 445 167 833 205 132 – 143 98 276 307 445 167	11 12 13 14 b1 b2 h1 h2 h3 833 205 164 – 176 98 276 307 445 167 313 833 205 199 – 224 108 276 307 445 167 313 833 205 195 – 220 108 276 307 445 167 313 833 205 195 – 220 108 276 307 445 167 313 833 205 132 – 143 98 276 307 445 167 313	11 12 13 14 b1 b2 h1 h2 h3 h4 833 205 164 – 176 98 276 307 445 167 313 140 833 205 199 – 224 108 276 307 445 167 313 162 833 205 195 – 220 108 276 307 445 167 313 162 833 205 195 – 220 108 276 307 445 167 313 162 833 205 132 – 143 98 276 307 445 167 313 162	11 12 13 14 b1 b2 h1 h2 h3 h4 r1 833 205 164 – 176 98 276 307 445 167 313 140 718 833 205 199 – 224 108 276 307 445 167 313 162 718 833 205 195 – 220 108 276 307 445 167 313 162 718 833 205 195 – 220 108 276 307 445 167 313 162 718 833 205 132 – 143 98 276 307 445 167 313 162 718	11 12 13 14 b1 b2 h1 h2 h3 h4 r1 r2 833 205 164 – 176 98 276 307 445 167 313 140 718 682 833 205 199 – 224 108 276 307 445 167 313 162 718 682 833 205 195 – 220 108 276 307 445 167 313 162 718 682 833 205 195 – 220 108 276 307 445 167 313 162 718 682 833 205 132 – 143 98 276 307 445 167 313 162 718 682 833 205 132 – 143 98 276 307 445 167 313 140 718 682

Burner type	Dimens d3	d4	d6	
WM-G10/2 ZM	M10	165	186	DN40
WM-G10/3 ZM	M10	210	235	DN50
WM-G10/4 ZM	M10	220	235	DN50
WM-G10/2 ZM-LN	M10	165	186	DN40
WM-G10/3 ZM-LN	M10	210	235	DN50

All dimensions are approximate. Weishaupt reserve the right to make alterations in light of future developments.

Boiler plate drilling dimensions

Plant at the Special Neurology Clinic in Dietenbronn, Germany

Max Weishaupt GmbH, D-88475 Schwendi Tel (073 53) 8 30, Fax (0 73 53) 8 33 58 www.weishaupt.de

Print No. 83**2063**02, July 2005 Printed in Germany. All rights reserved.

Neachells Lane, Willenhall, WV13 3RG Tel (01902) 609841, Fax (01902) 633343

63 Carlton Place, Glasgow, G5 9TW Tel (0141) 420 2030, Fax (0141) 420 2088

We're right where you need us

A strong sevice network gives peace of mind

Weishaupt equipment is available from good heating companies, with whom Weishaupt works in partnership. To support the specialists, Weishaupt meintains a large sales and service network. Delivery, spares and service are thus contiunally ensured. Even in an emergency, Weishaupt is on the job. The service department is available to Weishaupt customers around the clock, 365 days a year. A Weishaupt branch office or agency near you can answer all your questions on heating and Weishaupt burners and heating systems.

